Assumed–Stress Hybrid Elements with Drilling DoF for Nonlinear Analysis of Composite Structures

(NAG-1-1505)

7N-37-CR

Norman F. Knight, Jr.
Associate Professor
Department of Aerospace Engineering

P-53

(NASA-CR-195802) ASSUMED-STRESS HYBRID ELEMENTS WITH DRILLING DOF FOR NONLINEAR ANALYSIS OF COMPOSITE STRUCTURES (Old Dominion Univ.) 53 D

N95-70252

unclas

29/39 0027815

Norfolk, Virginia

Grant Review Presentation to Computational Structures Branch at NASA Langley June 30, 1994

Grant History

- Initiated on January 10, 1992 at Clemson University as NAG-1-1374; completed no-cost extension on May 15, 1993.
- Initiated on April 16, 1993 at Old Dominion University as NAG-1-1505; no-cost extension until August 15, 1994; renewal proposal submitted.
- Three supplements funded:
 - Suppl. 1 Modeling and additional element checkout (Carron)
 - Suppl. 2 Adaptive dynamic relaxation for MPP systems (Oakley)
 - Suppl. 3 Interface element development (Aminpour)
- Grant personnel
 - N. F. Knight Principal investigator (Clemson and ODU)
 - G. Rengarajan & V. Deshpande Clemson GRAs, MS, May 1993
 - D. Oakley Clemson GRA, PhD, May 1994
 - S. Carron ODU GRA, MS candidate under NFK
 - M. A. Aminpour Co-PI on ODU renewal proposal
 - B. Massoudmoghadam ODU GRA, MS candidate under MAA

田で派

Grant Objectives (Originally proposed in 1991)

- Assess the AQ4 formulation, implementation, and capabilities
- Develop family of elements compatible with AQ4 element (beam and triangular elements)
- Demonstrate the combined use of these elements on a complex structure
- Extend the family of elements to stability, vibration, and geometrically nonlinear problems
- Utilize the GEP in COMET for implementation
- Maintain compatibility with general—purpose FEM code

Grant Objectives (as evolved)

- FIRST YEAR (NAG-1-1374 at Clemson University)
 - Independent assessment of AQ4 4-node shell element
 - Development of compatible 2-node beam
 - Extend quad and beam elements to handle buckling and vibration
- SECOND YEAR (NAG-1-1505 at ODU)
 - Explore alternative stress fields
 - Derive diagonal mass coefficients
 - Further test cases for plates and shells
 - Development of compatible 3-node triangle
 - Explore use of ADR/explicit time integration on MPP systems
- THIRD YEAR (NAG-1-1505 at ODU with Aminpour as Co-PI)
 - Extend element family to handle geometrically nonlinear problems
 - Validate using specific test cases

開門に

Outline

- Element Formulation and Approach
- Results for Stress, Buckling and Vibration
- Research Directions
- ADR Performance on MPP Systems
- Future Plans and Summary

Background

- Drilling rotational dof introduced as part of the inplane displacement field – e.g., Allman (1984, 1988), Bergan et al. (1985, 1986), Cook (1986, 1987, 1989), MacNeal and Harder (1988), Yunus et al. (1988, 1989)
- Coupled with the assumed-stress hybrid formulation and Hellinger-Reissner principle in the element development – e.g., Pian (1964, 1984, 1985), Atluri (1984), Cook (1972, 1987), Yunus (1989), Aminpour (1989, 1992)
- Computational framework for finite element methods research and development (COMET, GEP) – Stanley et al. (1990), Knight et al. (1989, 1990), Stewart (1989)

田吟派

Drilling DOF in Formulation

Two main approaches:

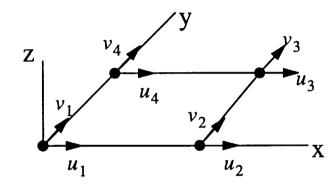
- Drilling Rotations in Displacement Approximations
 - Independent successful attempts by Allman (1984),
 Bergan and Felippa (1985).
- Independent Rotation Field Included in the Variational Statement
 - First by Reissner (1965), modified by Hughes and Brezzi (1989), Atluri (1984).

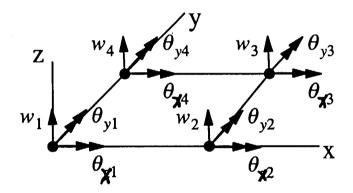
田空馬

Element Degrees-of-Freedom

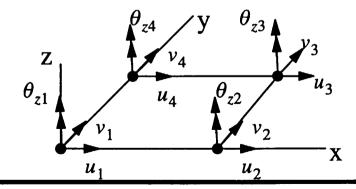
Membrane DoF without Normal Rotations

Bending DoF





Membrane DoF with Normal Rotations



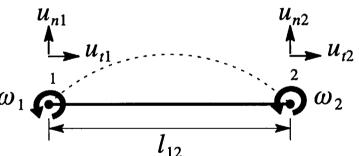
調が囲

Allman-type Shape Functions

Along an edge

$$u_n = (1 - \frac{s}{l_{12}}) u_{n1} + (\frac{s}{l_{12}}) u_{n2} + \frac{1}{2}s (1 - \frac{s}{l_{12}}) (\omega_2 - \omega_1)$$

$$u_t = (1 - \frac{s}{l_{12}}) u_{t1} + (\frac{s}{l_{12}}) u_{t2}$$



 u_{n1}, u_{n2} : Nodal Normal Displacements

 u_{t1}, u_{t2} : Nodal Tangential Displacements

 ω_1, ω_2 : Nodal Normal Rotations

 l_{12} : Length of the Edge

s: Local Coordinate (varying from 0 to l_{12} along the edge)

Finite Element Approximations

Geometry Approximations (2-node beam):

$$x'(\xi) = \frac{1}{2}(1 - \xi)x_1' + \frac{1}{2}(1 + \xi)x_2' = N_1(\xi)x_1' + N_2(\xi)x_2'$$

Displacement Field Approximations (2-node beam):

$$\begin{cases} u^{0'} \\ v^{0'} \\ w^{0'} \\ \theta_x \\ \theta_y \\ \theta_z \end{cases} = \begin{cases} N_1(\xi) v_1^{0'} + \frac{L}{8} (1 - \xi^2) \theta_{z1} + N_2(\xi) v_2^{0'} + \frac{L}{8} (\xi^2 - 1) \theta_{z2} \\ N_1(\xi) w_1^{0'} + \frac{L}{8} (\xi^2 - 1) \theta_{y1} + N_2(\xi) w_2^{0'} + \frac{L}{8} (1 - \xi^2) \theta_{y2} \\ N_1(\xi) \theta_{x1} + N_2(\xi) \theta_{x2} \\ N_1(\xi) \theta_{y1} + N_2(\xi) \theta_{y2} \\ N_1(\xi) \theta_{z1} + N_2(\xi) \theta_{z2} \end{cases}$$

or
$$\left\{u^*\right\} = \left[\overline{N}(\xi)\right]_{6\times 12} \left\{d_e\right\}_{12\times 1}$$

Finite Element Approximations

Geometry Approximations (4–node quad.):
$$x(\xi,\eta) = \sum_{i=1}^{4} N_i(\xi,\eta)x_i \qquad y(\xi,\eta) = \sum_{i=1}^{4} N_i(\xi,\eta)y_i$$

Displacement Field Approximations (4-node quad.):

$$\left\{u^*\right\} = \left[\overline{N}(\xi,\eta)\right]_{6\times24} \left\{d_e\right\}_{24\times1}$$

Displacement Field Approximations

$$u^{o}(\xi,\eta) \stackrel{\cdot}{=} N_{i}u_{i} + \frac{\Delta y_{i}}{8}N_{i}^{*}(\theta_{zj} - \theta_{zi}),$$

$$v^{o}(\xi,\eta) = N_{i}v_{i} - \frac{\Delta x_{i}}{8}N_{i}^{*}(\theta_{zj} - \theta_{zi}),$$

$$w^{o}(\xi,\eta) = N_{i}w_{i} - \frac{\Delta y_{i}}{8}N_{i}^{*}(\theta_{xj} - \theta_{xi}) + \frac{\Delta x_{i}}{8}N_{i}^{*}(\theta_{yj} - \theta_{yi}),$$

$$\theta_{x}(\xi,\eta) = N_{i}\theta_{xi},$$

$$\theta_{y}(\xi,\eta) = N_{i}\theta_{yi}.$$

Typical Displacement Expansions

 $N_i u_i = N_1 u_1 + N_2 u_2 + N_3 u_3 + N_4 u_4$

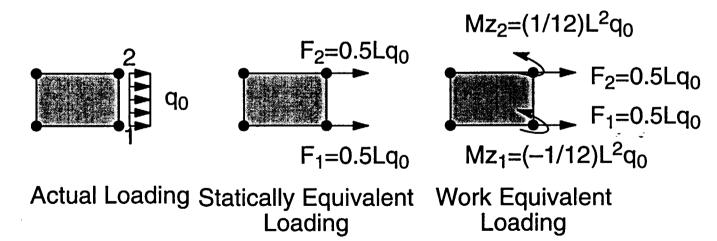
$$\frac{\Delta y_i}{8} N_i^* (\theta_{zj} - \theta_{zi}) = \frac{\Delta y_1}{8} N_1^* (\theta_{z2} - \theta_{z1}) + \frac{\Delta y_2}{8} N_2^* (\theta_{z3} - \theta_{z1}) + \frac{\Delta y_3}{8} N_3^* (\theta_{z4} - \theta_{z3}) + \frac{\Delta y_4}{8} N_4^* (\theta_{z1} - \theta_{z4}).$$

SHAPE Functions

当の囲

Effect on Element Loads

- Derivation of work equivalent, consistent loads includes normal rotations
- Affects stress distribution locally with minor effect on displacements



Assumed-Stress Hybrid Elements

- First introduced by Pian (1964), later pioneered by Pian and his co-workers.
- Initially based on a modified form of complementary energy principle, but now mostly based on Hellinger–Reissner variational principle.
- Displacements described throughout the element. (including the boundaries)
- Stresses described only in interior of the element. (no interelement stress continuity)

Hellinger-Reissner Functional

In Vector Form:

$$\pi_{HR} = -\frac{1}{2} \int_{A} \{\sigma^{*}\}^{T} [D^{*}] \{\sigma^{*}\} dA + \int_{A} \{\sigma^{*}\}^{T} [\mathcal{L}^{*}] \{u^{*}\} dA$$
$$- \int_{S_{\sigma}} \{u^{*}\}^{T} [R^{*}]^{T} \{t_{o}\} dS$$

Where,

$$\{\sigma^*\} = \{N_x N_y N_{xy} M_x M_y M_{xy} Q_x Q_y\}^T$$

$$\{u^*\} = \{u^o v^o w^o \theta_x \theta_y \theta_z\}^T$$

Field Approximations

Stress Approximation

$$\{\sigma^*\} = [P] \{\beta\}$$

Displacement Approximation

$$\{u^*\} = [N] \{q\}$$

Upon substitution, the functional reduces to

$$\pi_{HR} = -\frac{1}{2} \{\beta\}^{T} [H] \{\beta\} + \{\beta\}^{T} [T] \{q\} - \{q\}^{T} \{F\}$$

Where,

e,

$$[H] = \int_A [P]^T [D^*] [P] dA$$
 $[T] = \int_A [P]^T [\mathcal{L}^*] [N] dA$

$$\{F\} = \int_{S_{\sigma}} [N]^T [R^*] \{t_o\} \ dS$$

Element Stiffness Matrix

Imposing Stationary Conditions on the Functional

$$\delta \pi_{HR} = \frac{\partial \pi_{HR}}{\partial \{\beta\}} \ \delta \{\beta\} + \frac{\partial \pi_{HR}}{\partial \{q\}} \ \delta \{q\} = 0$$

$$\frac{\partial \pi_{HR}}{\partial \{\beta\}} = 0 \longrightarrow \{\beta\} = [H]^{-1}[T]\{q\}$$

Substituting this back in the functional, and then

$$\frac{\partial \pi_{HR}}{\partial \{q\}} = 0 \quad \longrightarrow \quad [k_e]\{q\} = \{F\}$$

where,

$$[k_e] = [T]^T [H]^{-1} [T]$$

is the Element Stiffness Matrix

当舗

Symbolic Computations

Derivation of the beam elemental matrices and arrays was performed using symbolic computational methods (i.e., MAPLE). That is, the operations needed for

$$[H] = \int_0^L [P]^T [D^*] [P] dx = \int_{-1}^{+1} [P]^T [D^*] [P] \frac{L}{2} d\xi$$

are performed symbolically using the following MAPLE commands:

```
DstarP:=multiply(Dstar,P):
PTDstarP:=multiply(PT,DstarP):
H:=array(1..6,1..6):
for i from 1 to 6 do
for j from 1 to 6 do
H[i,j]:=simplify((L/2)*int(PTDstarP[i,j],XI=-1..1)):
fortran(H[i,j],optimized);
od:
od:
```

開の派

Symbolic Computations, cont.

Derivation of the shell elemental matrices and arrays was also performed using symbolic methods but are more complicated.

$$[H] = \int_A [P]^T [D^*] [P] dA$$

```
Estar:=arrav(1..8.1..8):
P:=array([[1,0,0,xi,0,eta,0,eta*eta,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1,0,0,xi,0,eta,0,xi*xi,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0.0.1.-eta,0.0.-xi,0.0.0.0,0.0.0,0.0.0,0.0.0,0.0.0],
[0.0.0.0.0.0.0.0.0.0.1,0,0,xi,0,eta,0,eta*eta,0,0,0,0,0],
[0.0,0,0,0,0,0,0,0,1,0,0,xi,0,eta,0,xi*xi,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,xi,eta,0.5*(xi*xi),0.5*(eta*eta)],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,xi,0]]);
PT:=transpose(P):
EP:=multiply(Estar,P):
PTEP:=multiply(PT,EP):
H:=array(symmetric,1..22,1..22):
JAC:=a1*xi+a2*eta+a3:
for i from 1 to 22 do
for j from i to 22 do
H[i,j]:=simplify(int(int(PTEP[i,j]*JAC,eta=-1..1),xi=-1..1)):
od:
```

Symbolic Computations, cont.

Typical MAPLE–generated coefficients of [H] and [T] matrices:

```
H(22,22) = 0.2D0*Estar(6,6)*a3+0.133333333313*Estar(7,7)*a3+0.4D0*
\#Estar(6,7)*a2+0.4D0*Estar(7,6)*a2
```

```
T(4,18) = 4.D0/9.D0*aJACt(1,3)*P178+4.D0/3.D0*aJACt(1,2)*p232+4.D0
#/3.D0*aJACt(1,3)*p152+4.D0/9.D0*aJACt(1,1)*P118+4.D0/9.D0*aJACt(1,
#3)*P158+4.D0/9.D0*aJACt(1,2)*P238+4.D0/3.D0*aJACt(1,1)*p112+4.D0/3
#.D0*aJACt(1,3)*p192-4.D0/9.D0*aJACt(3,1)*p117-4.D0/9.D0*aJACt(3,3)
#*p197-4.D0/9.D0*aJACt(3,2)*p237-4.D0/9.D0*aJACt(3,3)*p157-4.D0/3.D
#0*aJACt(3,2)*p233-4.D0/3.D0*aJACt(3,3)*p193-4.D0/3.D0*aJACt(3,3)*p
#153-4.D0/3.D0*aJACt(3,1)*p113
```

3-D Beam Theory

Kinematics:

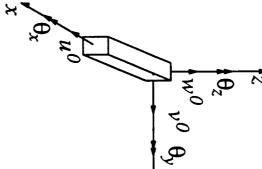
$$u(x, y, z) = u^{0}(x) + z \theta_{y}(x) - y \theta_{z}(x)$$

 $v(x, y, z) = v^{0}(x) - z \theta_{x}(x)$
 $w(x, y, z) = w^{0}(x) + y \theta_{x}(x)$

$$(x, y, z) = v^0(x) - z \theta_x(x)$$

$$\nu(x,y,z) = w^{0}(x) + y \theta_{x}(x)$$

Or
$$\{u\} = \begin{cases} u \\ v \\ w \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 & z & -y \\ 0 & 1 & 0 & -z & 0 & 0 \\ 0 & 0 & 1 & y & 0 & 0 \end{bmatrix} \begin{cases} u^0 \\ v^0 \\ \theta_x \\ \theta_y \\ \theta_z \end{bmatrix} = \begin{bmatrix} R^* \end{bmatrix} \{u^* \}$$



開め続

3-D Beam Theory

Strain-Displacement Relations:

$$\varepsilon_{x}(x, y, z) = \frac{\partial u}{\partial x} = \frac{\partial u^{0}}{\partial x} + z \frac{\partial \theta_{y}}{\partial x} + y \left(-\frac{\partial \theta_{z}}{\partial x} \right)$$

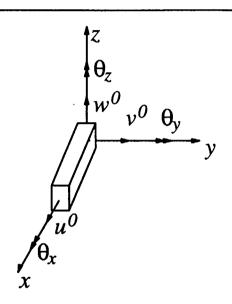
$$= \varepsilon_{x}^{0}(x) + z \varkappa_{y}(x) + y \varkappa_{z}(x)$$

$$\gamma_{xy}(x, y, z) = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \left(-\theta_{z} + \frac{\partial v^{0}}{\partial x} \right) - z \frac{\partial \theta_{x}}{\partial x}$$

$$= \gamma_{xy}^{0}(x) - z \alpha(x)$$

$$\gamma_{xz}(x, y, z) = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \left(\theta_{y} + \frac{\partial w^{0}}{\partial x} \right) + y \frac{\partial \theta_{x}}{\partial x}$$

$$= \gamma_{xz}^{0}(x) + y \alpha(x)$$



3-D Beam Theory

田心息

Strain-Displacement Relations, continued:

$$\begin{cases} \varepsilon \} = \begin{cases} \varepsilon_x \\ \gamma_{xy} \\ \gamma_{xz} \end{cases} = \begin{bmatrix} 1 & z & y & 0 & 0 & 0 \\ 0 & 0 & 0 & -z & 1 & 0 \\ 0 & 0 & 0 & -z & 1 & 0 \\ 0 & 0 & 0 & 0 & y & 0 & 1 \end{bmatrix} \begin{pmatrix} \varepsilon_x \\ \alpha_z \\ \alpha_z \\ \gamma_{xy} \\ \gamma_{xy} \\ \gamma_{xy} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{$$

3-D Beam Theory

Stress-Strain Relations:

$$\{\sigma\} = \begin{cases} \sigma_x \\ \tau_{xy} \\ \varepsilon_{xz} \end{cases} = \begin{bmatrix} E & 0 & 0 \\ 0 & G & 0 \\ 0 & 0 & G \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \gamma_{xy} \\ \gamma_{xz} \end{bmatrix} = \begin{bmatrix} C \end{bmatrix} \{\varepsilon\}$$

$$\frac{M_2}{Q_2Q_yM_y}$$

Determine the beam force and moment resultants:

$$\left[\sigma^*\right] = \int_A \left[R\right]^T \left\{\sigma\right\} dA = \left[\int_A \left[R\right]^T \left[C\right] \left[R\right] dA \left|\varepsilon^*\right\} = \left[C^*\right] \left|\varepsilon^*\right\}$$

開き

3–D Beam Theory

Stress-Strain Relations, continued:

$$\{\sigma^*\} = [C^*][\varepsilon^*]$$

where

$$\begin{array}{c}
Z \\
M_z \\
Q_z \\
Q_y M_y \\
Y \\
X
\end{array}$$

$$\begin{bmatrix}
N_x \\
M_y \\
M_z \\
T \\
Q_y \\
Q_z
\end{bmatrix} = \begin{bmatrix}
EA & EAe_z & EAe_y & 0 & 0 & 0 \\
EAe_z & EI_{zz} & EI_{yz} & 0 & 0 & 0 \\
EAe_z & EI_{zz} & EI_{yz} & 0 & 0 & 0 \\
EAe_y & EI_{yz} & EI_{yy} & 0 & 0 & 0 \\
0 & 0 & 0 & -GA_se_z & GA_se_y \\
0 & 0 & 0 & GA_se_y & 0
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x^0 \\
\varkappa_y \\
\varkappa_z \\
\alpha \\
\gamma_{xy}^0 \\
\gamma_{xy}^0 \\
\gamma_{xz}^0
\end{bmatrix}$$

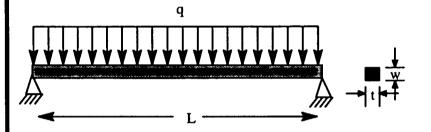
and
$$\left\{\varepsilon^*\right\} = \left[C^*\right]^{-1} \left\{\sigma^*\right\} = \left[D^*\right] \left\{\sigma^*\right\}$$

from LAUE

Finite Element Approximations

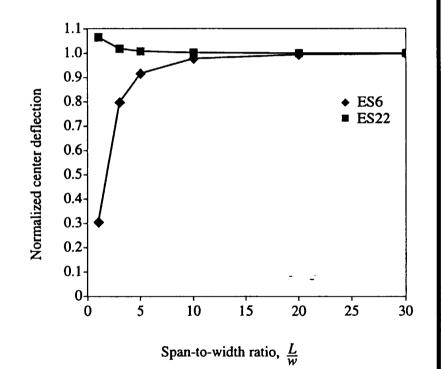
Stress Field Approximations (2-node beam): 12 displacement dof/element, 6 rigid body modes Stress field needs a minimum of 6 parameters

Beam Bending



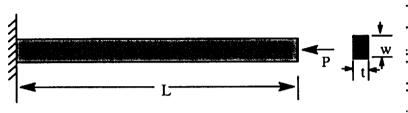
Properties of the beam.

E = 1 . x
$$10^7$$
psi,
v = 0 . 3,
L = 10 . in,
t = 1 . 0 in,
q = 1 . 0 lb/in .



田門

Beam Buckling



Properties of the Beam (consistent units)

 $E = 1. \times 10^7$

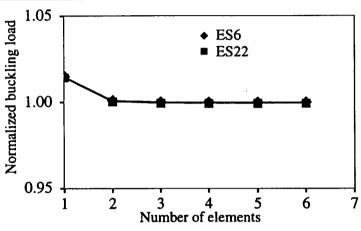
 $\nu = 0.3$

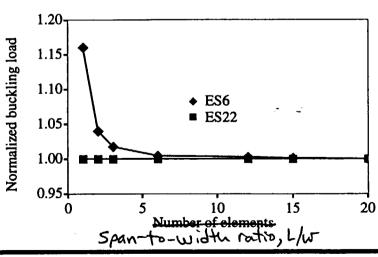
L = 6.0

w = 0.2

t = 0.1

P = 1.0





調調

Deformation Modes

- Membrane
 - 12 Deformation Modes = 3 Rigid Body Modes
 - + 3 Constant Strain States
 - + 5 Higher-Order Strain States
 - + 1 Spurious Zero-Energy Mode

- Bending
 - 12 Deformation Modes = 3 Rigid Body Modes
 - + 5 Constant Strain States
 - + 4 Higher-Order Strain States
- Note: θ_z not interpolated independently

Finite Element Approximations

Hed)

Stress Field Approximations (4-node quad.): 24 displacement dof/element, 6 rigid body modes Stress field needs a minimum of 18 parameters (AQ4 has 9 for membrane; 13 for bending)

$$\begin{vmatrix} N_{\xi} \\ N_{\eta} \\ N_{\eta} \\ N_{\eta} \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & \eta & 0 & \xi & 0 & \eta^2 & 0 & 0 & 0 & 0 & 0 & \frac{\beta}{\beta} \\ 0 & 1 & 0 & 0 & \xi & 0 & \eta^2 & 0 & \frac{\beta}{\beta} \\ 0 & 0 & 1 & 0 & 0 & -\eta & -\xi & 0 & 0 \end{bmatrix} \begin{vmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ N_{\xi\eta} \\ N_{\eta} \\$$

開學

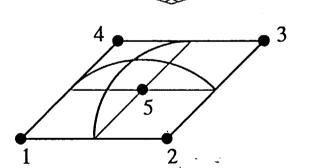
Improved Displacement Field

- Introduction of a Bubble Function
- Bubble Function corresponds to a Node at the Center of the Element

$$N_5 = (1 - \xi^2) (1 - \eta^2)$$

Additional Degrees of Freedom

$$u_5, v_5, w_5, \theta_{x5}, \theta_{y5} \ (no \ \theta_{z5})$$



 Stiffness Matrix condensed to retain the original order of the Element Stiffness Matrix (24 x 24)

Family

	ţ	<	
			4
			_
			Τ
	_		
	•	•	
		7	3
			$\frac{1}{3}$
		-	
		(2
,			
			ر
			D
İ		_	
			Ŧ
		_	
		7	T
			_
l			4
		(D
		Ī	

Element	Additional Modifications	Num displa	Number of displacement dof	Men	Number of stress parameters
name	Modifications	In- Plane	Out-of Plane	e H	of- Membrane Bending
	Symbolic Version	15	13		0
	Modified Membrane				
A4S2	Stress Field	12	12	2	2 11
	Bubble Functions			į	
A4S3	(Out-of-plane)	12	—	15	9
	Bubble Functions				
A4S4	(In-plane)	14	12	2	2 11
	Bubble Functions				
A4S5	(Both)	14	15	5	5 11
	Bubble Functions				
A4S6	(Out-of-plane)	12	15	6	5 9

Membrane Stress Field

$$\begin{aligned}
N_{\xi} &= \beta_1 + \beta_4 \xi + \beta_6 \eta + \beta_8 \eta^2 \\
N_{\eta} &= \beta_2 + \beta_5 \xi + \beta_7 \eta + \beta_9 \xi^2 \\
N_{\xi \eta} &= \beta_3 - \beta_4 \eta - \beta_7 \xi
\end{aligned}$$

Bending Stress Field

$$M_{\xi} = \bar{\beta}_{1} + \bar{\beta}_{4}\xi + \bar{\beta}_{6}\eta + \bar{\beta}_{8}\eta^{2}
 M_{\eta} = \bar{\beta}_{2} + \bar{\beta}_{5}\xi + \bar{\beta}_{7}\eta + \bar{\beta}_{9}\xi^{2}
 M_{\xi\eta} = \bar{\beta}_{3} + \bar{\beta}_{10}\xi + \bar{\beta}_{11}\eta + \frac{1}{2}\bar{\beta}_{12}\xi^{2} + \frac{1}{2}\bar{\beta}_{13}\eta^{2}$$

Transverse Shear Stress Field

$$Q_{\xi} = \bar{\beta}_{4} + \bar{\beta}_{11} + \bar{\beta}_{13}\eta$$

$$Q_{\eta} = \bar{\beta}_{7} + \bar{\beta}_{10} + \bar{\beta}_{12}\xi$$

Modified Stress Field

Proposed Membrane Stress Field

$$\begin{aligned}
N_{\xi} &= \beta_1 + \beta_4 \xi + \beta_6 \eta + \beta_8 \eta^2 + \beta_{10} \xi \eta \\
N_{\eta} &= \beta_2 + \beta_5 \xi + \beta_7 \eta + \beta_9 \xi^2 + \beta_{11} \xi \eta \\
N_{\xi \eta} &= \beta_3 - \beta_4 \eta - \beta_7 \xi - \frac{1}{2} \beta_{10} \eta^2 - \frac{1}{2} \beta_{11} \xi^2
\end{aligned}$$

Remarks:

- 11 independent stress parameters to suppress 11 independent deformation modes (9 + 2 due to bubble function)
- Equilibrium equations satisfied exactly on specializing field to Cartesian basis
- Field produces rank deficiency
- Equivalent to enforcing equilibrium in variational statement (using Lagrange multipliers)

Remedy

Not satisfying equilibrium equations a priori

How?

- 1. Additional terms in the approximations
- 2. Uncoupled stress field approximations

Alternate Stress Fields

Membrane

$$N_{\xi} = \beta_1 + \beta_4 \xi + \beta_7 \eta + \beta_{10} \eta^2$$

 $N_{\eta} = \beta_2 + \beta_5 \xi + \beta_8 \eta + \beta_{11} \xi^2$
 $N_{\xi \eta} = \beta_3 + \beta_6 \xi + \beta_9 \eta$

Transverse Shear I (additional terms)

$$Q_{\xi} = \bar{\beta}_{4} + \bar{\beta}_{11} + \bar{\beta}_{13}\eta + \bar{\beta}_{14} + \bar{\beta}_{15}\xi Q_{\eta} = \bar{\beta}_{7} + \bar{\beta}_{10} + \bar{\beta}_{12}\xi + \bar{\beta}_{16}\eta + \bar{\beta}_{17}$$

Transverse Shear II (uncoupled field)

$$egin{array}{lll} Q_{\xi} &=& ar{eta}_{14} \,+\, ar{eta}_{16} \xi \,+\, ar{eta}_{18} \eta \ Q_{\eta} &=& ar{eta}_{15} \,+\, ar{eta}_{17} \xi \,+\, ar{eta}_{19} \eta \end{array}$$

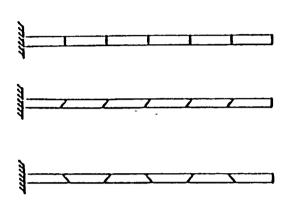
Note: Bending stress field remains the same

調の開

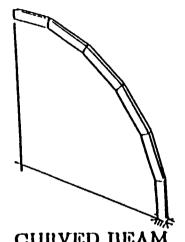
AQ4 Shell Element Assessment

- Replicated the element test cases reported by Aminpour
- Performed additional bending test cases for mesh distortion and shear locking
- Performed additional shell analysis using the pear—shaped cylinder test case

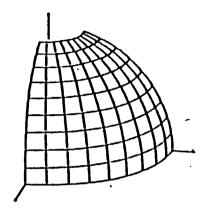
MACNEAL-HARDER PROBLEMS



CANTILEVER BEAM

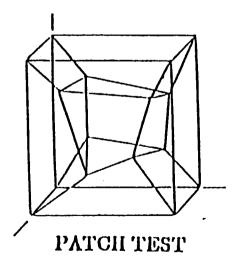


CURVED DEAM



SPHERICAL SHELL

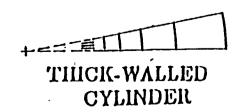
SCORDELIS-LO ROOF





TWISTED BEAM

RECTANGULAR PLATE



調運

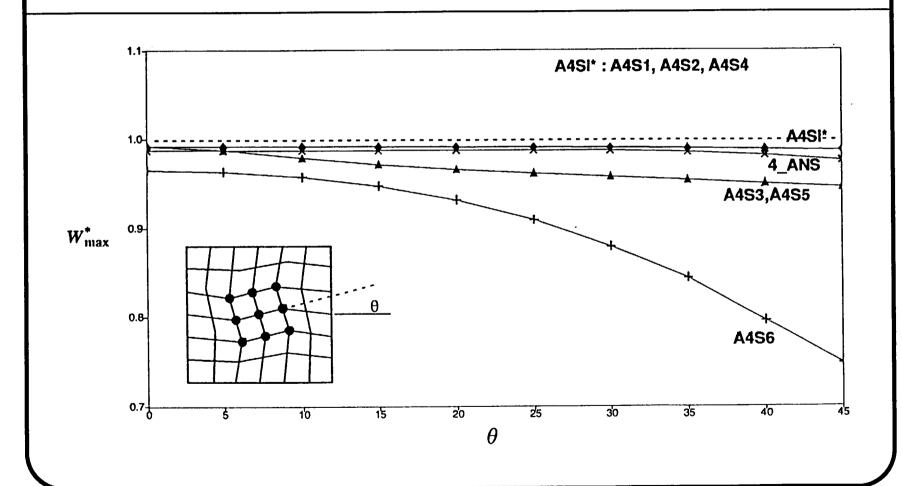
M-H Cantilever Beams

A: Extension, B: In-plane Shear, C: Out-of-plane Shear, D: Twist									
Load	4_ANS	4_MSC	4_STG	A4S1	A4S2	A4S3	A4S4	A4S5	A4S6
Rectangular-Shaped Elements									
A	0.995	0.995	0.994	0.998	0.998	0.998	0.988	0.988	0.988
В	0.904	0.904*	0.915	0.993	0.993	0.993	0.993	0.993	0.993
C	0.980	0.986	0.986	0.981	0.981	0.981	0.981	0.981	0.981
D	0.856	0.941	0.680	1.009	1.009	1.009	1.009	1.009	0.858
Trapezoidal-Shaped Elements									
A	0.761	0.996	0.991	0.998	0.998	0.998	0.998	0.998	0.998
В	0.305	0.071*	0.813	0.986	0.985	0.986	0.986	0.986	0.986
C	0.763	0.968	†	0.969	0.969	0.968	0.969	0.968	0.961
D	0.843	0.951	†	1.007	1.007	1.004	1.007	1.004	0.856
Parallelogram-Shaped Elements									
A	0.966	0.996	9.989	0.998	0.998	0.998	0.998	0.998	0.998
В	0.324	0.080*	0.794	0.977	0.972	0.977	0.977	0.977	0.977
C	0.939	0.977	0.991	0.980	0.980	0.980	0.980	0.980	0.979
D	0.798	0.945	0.677	1.007	1.007	0.999	1.007	0.999	0.846

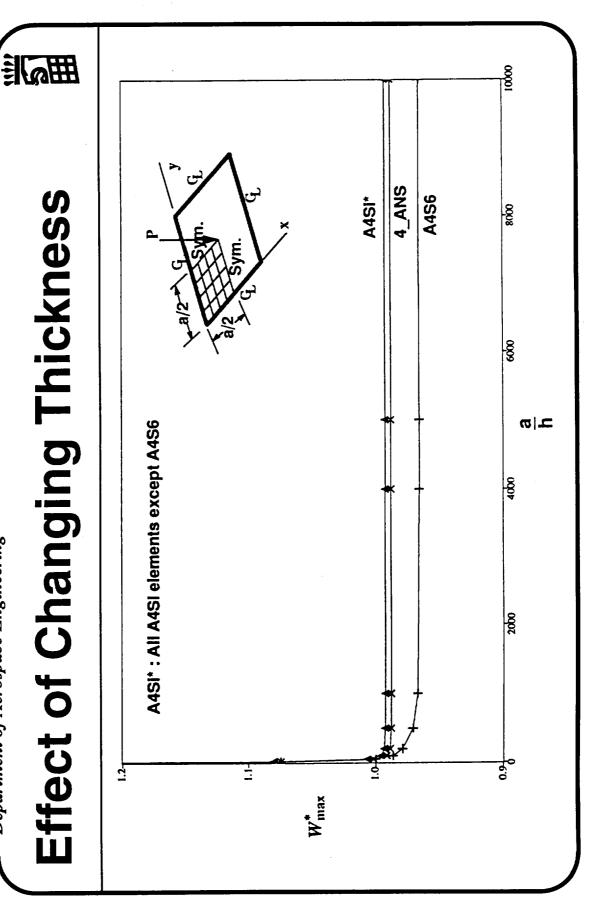
^{*} Q4S results for these cases are 0.993, 0.988, and 0.986, respectively.

[†] Produces a singular stiffness matrix.

Effect of Mesh Distortion

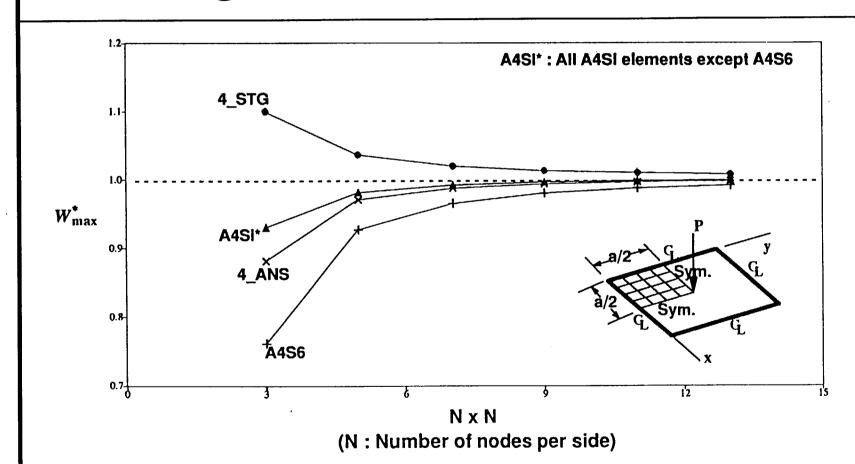


Effect of Changing Thickness

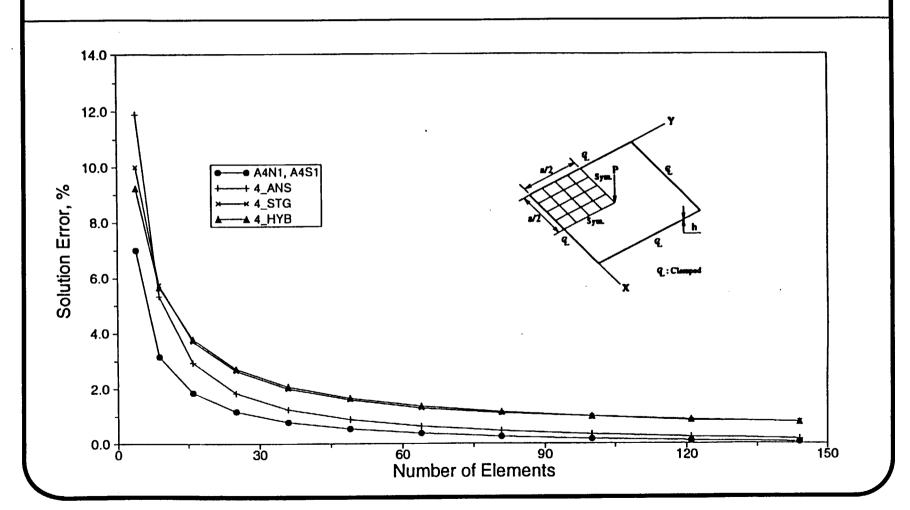


開き

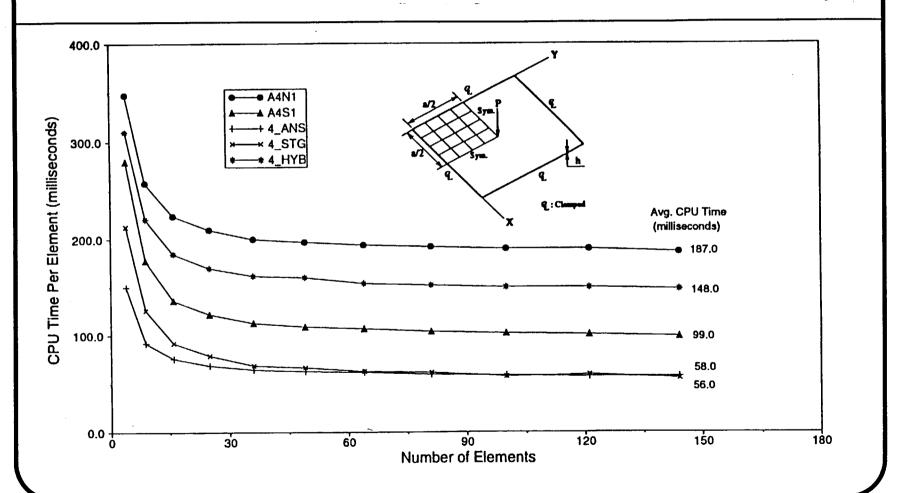
Convergence



Solution Error per Element



CPU Time Per Element



Timing for Element Family

Isotropic Square Plate

1.887	A4N1
1.799	A4S6
1.917	A4S5
1.640	A4S4
1.789	A4S3
1.054	A4S2
1.000	A4S1
Element Normalized CPU Time per Element	Element
144 Elements (13 \times 13 mesh)	

Computational Effort Required for Specified Solution Error

Solution Error	Element Name	Number of elements	t^K/t^K_{A4S1}	t^O/t^O_{A4S1}
< 5 %	A4S1	9	1.000	1.000
	A4N1	9	1.450	1.044
	4_ANS	16	0.763	0.835
	4_STG	16	0.919	1.098
	4_HYB	16	1.850	1.146
< 2 %	A4S1	16	1.000	1.000
	A4N1	16	1.650	1.114
	4_ANS	25	0.793	0.883
	4_STG	36	1.147	1.375
,	4_HYB	49	3.622	1.738
< 1 %	A4S1	36	1.000	1.000
	A4N1	36	1.783	1.198
	4_ANS	49	0.758	0.891
	4_STG	100	1.440	1.978
}	4_HYB	121	4.486	2.499
< 0.5 %	A4S1	64	1.000	1.000
	A4N1	64	1.809	1.269
	4_ANS	81	0.706	0.884
	4_STG	_	_	-
	4_HYB	_	_	_

 t^K : Total CPU time to evaluate all the element stiffness matrices.

 t^{O} : Overall solution time (total time from start to finish).

 t_{A4S1}^{K} : Total CPU time to evaluate all the element stiffness matrices using A4S1.

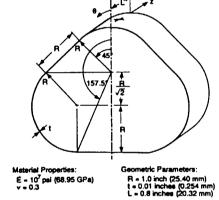
 t^{O}_{A4S1} : Overall solution time using A4S1.

開

Application of Shell Element

Mode 1

Pear-shaped Cylinder
Under Axial Compression

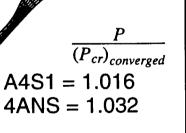


> Linear Buckling Analysis Mode 2

Element Stiffness Matrix Formation Time

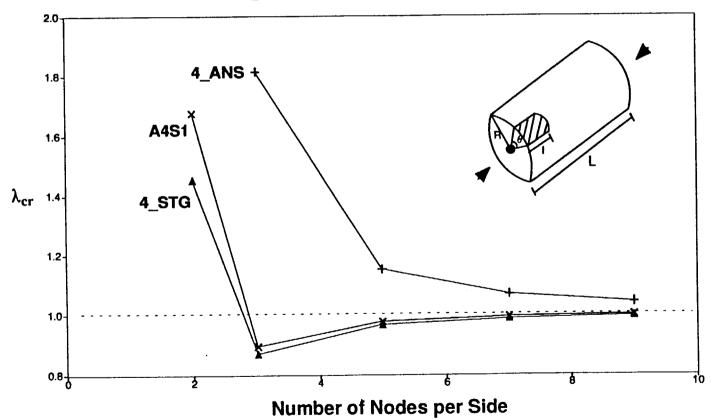
Element	Relative
	CPU Times
AQ4	1.00
A4S1	0.52
4ANS	0.30
F410	0.30

 $\frac{P}{(P_{cr})_{converged}}$ A4S1 = 1.013 4ANS = 1.021



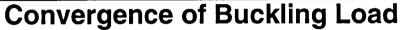
開

Axially Compressed Cylinder

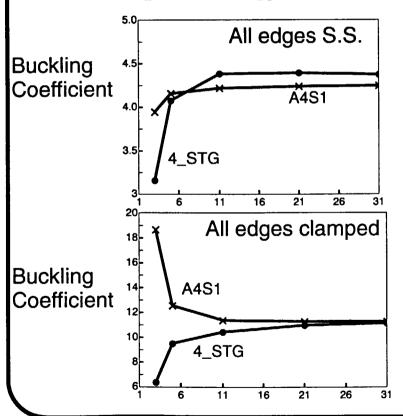


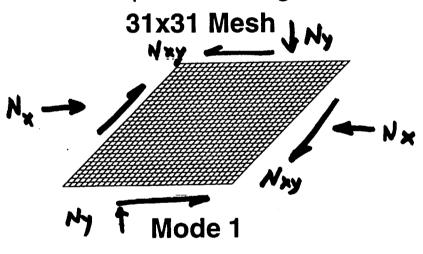
調

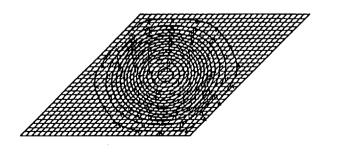
Skewed Laminated Plate



[±45/90/0]_s Laminate; Combined in-plane loading







Explicit Time Integration and ADR

• A technique for solving the semi-discrete equations of motion

$$M\ddot{D} + C\dot{D} + F(D) = P$$

• Use explicit time integration scheme such as Central Difference

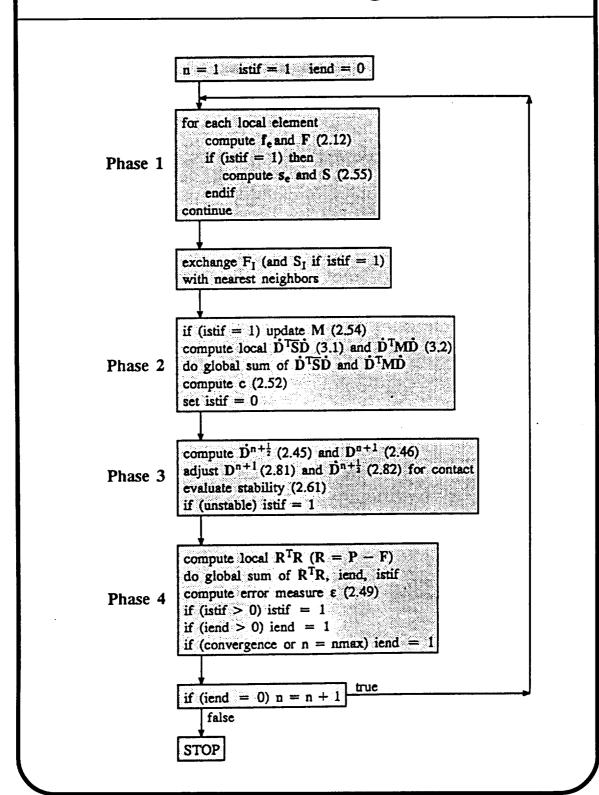
$$\dot{\mathbf{D}}^{n} = \frac{1}{2h}(\mathbf{D}^{n+1} - \mathbf{D}^{n-1}) \qquad \ddot{\mathbf{D}}^{n} = \frac{1}{h^{2}}(\mathbf{D}^{n+1} - 2\mathbf{D}^{n} + \mathbf{D}^{n-1})$$

- ullet Use diagonal M and mass-proportional damping ${f C}=c{f M}$
- Resulting fundamental time-marching equation becomes

$$\mathbf{D}^{n+1} = \left(\frac{2h^2}{2+ch}\right)\mathbf{M}^{-1}(\mathbf{P}^n - \mathbf{F}^n) + \left(\frac{4}{2+ch}\right)\mathbf{D}^n - \left(\frac{2-ch}{2+ch}\right)\mathbf{D}^{n-1}$$

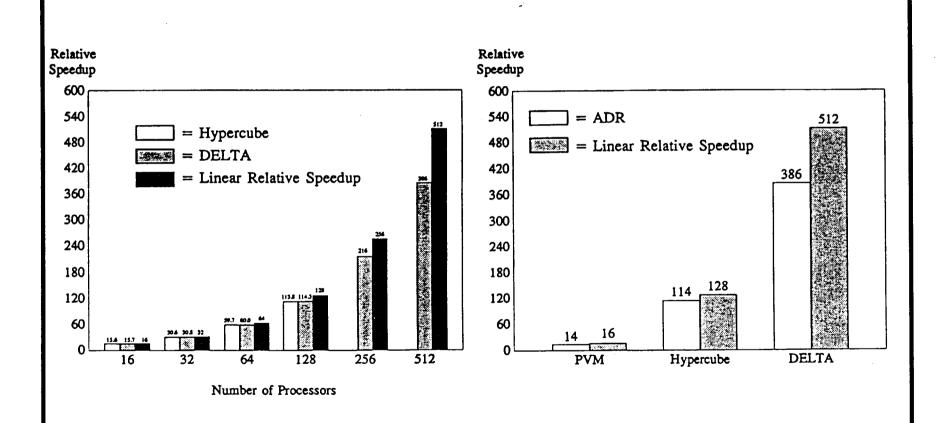
- For a given time step, most of computational effort is in evaluation of \mathbf{F}^n (all other quantities on RHS are known)
- Very efficient solution technique for nonlinear transient dynamic analysis

Parallel ADR Algorithm



開

Maximum Relative Speedups



開き続

Progress To-Date

- Completed development of quad. shell element for linear stress, buckling and vibration.
- Assessed alternative formulations.
- Completed development of compatible beam element for linear stress, buckling and vibration.
- Both have consistent and diagonal mass matrices, consistent loads, and element stress resultant recovery.
- Performed review and upgrade of nonlinear solution strategy.
- Applied elements to Grumman shear buckling panel with good results.

調調

Future Plans and Summary

- Complete development of compatible 3-node triangle for linear stress, buckling and vibration.
- Derive the internal force vectors for geometrically nonlinear problems (beam, quad., and triangle).
- Validate the combined use of the elements.
- Validate nonlinear implementations.